<<345678>>
26.

For 3x3 matrices M and N  , which of the following statement(s)  is (are) not correct?


A) $N^{T}MN $ is symmetric or skew-symmetric , according as M is symmetric or skew-symmetric

B) MN-NM is symmetric for all symmetric matrices M andN

C) M N is symmetric for all symmetric matrices M and N

D) (adj M) (adj N) = adj(MN) for all invertible matrices M and N



27.

Let  f(x)= x sin  $\pi$ x, x>0 . Then for all natural numbers n, f'(x) vanishes at 


A) a unique point in the interval $(n,n+\frac{1}{2})$

B) a unique point in the interval $(n+\frac{1}{2},n+1)$

C) a unique point in the interval (n,n+1)

D) two pints in the interval (n,n+1)



28.

A line l passing through the origin is perpendicular to the lines

$l_{1}:(3+t)\hat{i}+(-1+2t)\hat{j}+(4+2t)\hat{k},-\infty<t<\infty$

$l_{2}:(3+2s)\hat{i}+(3+2s)\hat{j}+(2+s)\hat{k},-\infty<t<\infty$

Then, the coordinate (s)  of the point(s)  on l2 at a distance of   $\sqrt{17}$ from the point of intersection of l and l1 is (are)


A) $(\frac{7}{3},\frac{7}{3},\frac{5}{3})$

B) (-1,-1,0)

C) (1,1,1)

D) $(\frac{7}{9},\frac{7}{9},\frac{8}{9})$



29.

Let   $S_{n}=\sum_2^{4n}(-1)^{\frac{k(k+1)}{2}}k^{2}$.Then , Sn can take value (s)


A) 1056

B) 1088

C) 1120

D) 1332



30.

A rectangular sheet of the fixed perimeter with sides having their lengths in the ratio 8:15 is converted into an open rectangular box by folding after removing squares of the equal area from all four corners.If the total area of removed squares is 100, the resulting box has maximum volume.The lengths of the sides of the rectangular sheet are 


A) 24

B) 32

C) 45

D) 60



<<345678>>