Answer:
Option B,D
Explanation:
Concept involved
Equation of straight line is.
$l: \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Since, l is perpendicular to l1 and l2
$\therefore$ its DR's are cross product of l1 and l2
Now, to find a point on l2 whose distance is given, assume a point and find its distance to obtain point
Let $l: \frac{x-0}{a}=\frac{y-0}{b}=\frac{z-0}{c}$
which is perpendicular to
$l_{1}:(3\hat{i}-\hat{j}+4\hat{k})+t(\hat{i}+2\hat{j}+2\hat{k})$
$l_{2}:(3\hat{i}+3\hat{j}+2\hat{k})+s(2\hat{i}+2\hat{j}+\hat{k})$
$\therefore$ DR's of l, is
$\begin{bmatrix}\hat{i} & \hat{j} &\hat{k}\\1 & 2& 2 \\2 &2&1 \end{bmatrix}$
$=-2\hat{i}+3\hat{j}-2 \hat{k}$
$\therefore$ $l:\frac{x}{-2}=\frac{y}{3}=\frac{z}{-2}=k_{1},k_{2}$
Now, A(-2k1,3k1,-2k1)
and B (-2k2,3k2,-2k2)
since , A lies on l1
$\therefore$ $(-2k_{1})\hat{i}+(3k_{1})\hat{j}-2k_{1})\hat{k}$
= $(3+t)\hat{i}+(-1+2t)\hat{j}+(4+2t)\hat{k}$
$\Rightarrow$ $ 3+t=-2k_{1},-1+2t=3k_{1}$
4+2t=-2k1
$\therefore$ k1=-1
$\Rightarrow $ A(2,-3,2)
Let any point on l2 (3+2s,3+2s,2+5)
$\Rightarrow $ $\sqrt{(2-3+2s)^{2}+(-3-3-2s)^{2}+(2+2+s)^{2}}=\sqrt{17}$
$\Rightarrow $ $9s^{2}+28s+37=17$
$\Rightarrow $ $9s^{2}+28s+20=0$
$\Rightarrow $ $9s^{2}+18s+10s+20=0$
$\therefore$ (9s+10)(s+2) =0
$\Rightarrow $ s=-2,-10/9
Hence (-1,-1,0) and $(\frac{7}{9},\frac{7}{9},\frac{8}{9})$ are required points